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Liouville equation in the form of a partial differential equation 
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Abstract. The Liouville equation for a wide class of boson Hamiltonians can be expressed 
in the form of partial differential equations for the quasidistributions QN and QA. Their 
coefficients are calculated by differentiation of the Hamiltonians. 

1. Introduction 

The time evolution of a quantum system is described by means of the density matrix 
formalism-the quantum Liouville equation or the Heisenberg equations of motion. 
Both methods are statistically equivalent. The first one, however, seems more useful 
for boson systems if Louisell's coherent-state technique (Louisell 1973) is applied. It 
allows us to study the quantum statistical properties of boson interactions in a c-number 
domain. 

In this paper we show, using the Louisell formalism, that the quantum Liouville 
equation for a large class of boson interactions can be expressed as partial differential 
equations for the quasidistribution functions ON and OA. Both quasidistributions are 
related simply with the density matrix satisfying the Liouville equation. The Q N  and 
OA equations we arrive at are formally simple and their coefficients are obtained by 
differentiation of the Hamiltonian. 

2. Equations for the quasidistributions @ A  and GN 

Numerous boson interactions, for example Raman, Brillouin and hyper-Raman scatter- 
ing, optical parametric processes, and phonon processes in crystals, are governed by 
the following Hamiltonian (for a review see Peiina 1984) 

where 

Q: = a:ara: .  . . a,' 

Q2= a p + l a p + 2 a p + 3 . .  . an.  
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1456 P Szlachetka 

The free Hamiltonian for n oscillators is denoted by Ho whereas H,,, plays the role 
of the effective interaction Hamiltonian. The creation a: and annihilation a, operators 
satisfy the boson commutation relation: 

[ a , ,  = 8 i k *  ( 2 . 5 )  
The parameter K in (2.3) is the coupling constant. 

In this paper we show, using Louisell's technique, that the Liouville equation 

(2.6) aP 
a t  

i h - = [ H, p ]  

for the dynamical system (2.1)-(2.3) can be expressed in the form of partial differential 
equations: 

or 

r 

where the coefficients d and 9 are calculated by differentiation of the Hamiltonian 
(2.1)-(2.3): 

In the last two terms of the series (2.7) and (2.8) the maximal value of r equals n. The 
coefficients d* and 9* are complex conjugated to d and 9, respectively. The quantity 
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a, in (2.7) and (2.8) is defined as an eigenvalue of the annihilation operator a,, i.e. 
a,l{a,}) = a,l{a,}) where ]{a,}) = n:=, la,) is an n-mode coherent state. The quasidistri- 
butions Q N  and @ A  are used for averaging the normally ( N )  and antinormally (A) 
ordered boson operators and are defined as follows (Louisell 1973, Haken er a1 1967, 
Lax 1967, Peiina 1984): 

@A({a,}> {a,*>) = T-"pN({cuj}, {a,*}) 
@N({a,}, {a:>) = T-"pA({a , } ,  (2.11) 

P"({a,}, {a,*}) = N-Ip"({a,L {a:) )  

(2.10) 

where n is the number of modes. The function p"({a,}, {a:}) is defined by 

where the operator N-' transforms the density matrix (an operator function) in normal 
ordering p N  to an ordinary function pN of the complex variables a, a* by replacement 
of a by a and of a+ by a*. In order to transform the function pN to the operator pN 
we use the operator N. To obtain @ A  in practice we obviously first put p into normal 
form and then write a* instead of a+ and a instead of a. 

(2.12) 

The function pA({a,}, {a,*}) is defined by way of the following relation: 

P A ( b , } ,  {a,*}) = - o A ( { a , l ,  {a:)) (2.13) 
where the operator si!-' transforms the antinormally ordered density matrix pA into 
the classical function PA. The properties of the operators N, N-I ,  sd and .de' are 
considered fully in Louisell (1973, ch 3). Sometimes, in quantum optics, the function 
aN is referred to as the Glauber-Sudarshan function or P representation and the 
function @A is denoted by the symbol Q. In general, a QN function does not exist as 
a tempered distribution for all quantum states, whereas the (DA function is always well 
behaved-it is non-negative and regular. Due to this, the CPA function is always 
preferred in practice (Peiina 1984). 

Let us now have a look at the formal procedure of replacing the Liouville equation 
(2.6) by (2.7). To start with, let us assume that the density matrix p in (2.6) can be 
expressed in normal ordering, i.e. p = p N .  Now, let us take into account the relation 
(Louisell 1973) 

[a,f(a, a + ) ]  = af/aa+ (2.14) 
leading to 

(2.15) 
and note that, if f = f N  denotes an expression in normal order, then the right-hand 
side of (2.15) is normally ordered. This statement allows us to put the commutator 

[HO+H,",, P"1 (2.16) 
into normal form. For the first part of the commutator (2.16) we obtain 

af(a, a + )  =f(a, a+)a+af(a, a+) /aa+ 

[H,, p"]  = h 2 w i ( U t U i p N -  H C )  
i = l  

i = l  aai 
Let us now order the second part of the commutator (2.16): 

(2.17) 

(2.18) 
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(2.19) 

( I )  - arp  ~ ‘ Q I  

Q1 -aa: aa; aa: . . . ea: aa, aa, a u k . .  . aai‘  

The proof of (2.19) is given in the appendix. 

h(  KQ:Q2 + K *Q:Q1)pN - HC = R (  KQ:Qy’ + K *Q:Q:”) - HC 

Taking into account (2.18), we have 

+ h( K *  2 Q:Qp+K i Q;Qy)) --HC 
1=1 r=p+1 

+jj h (K* f Q:Q‘,”+ K QTQ:”) - H C  
I . ] = ]  I , ]  = p +  I 

+?(K* 3! r , j ,k= I  f Q:Q!”+K r , ~ ,  k i = p +  I Q;Q:”)-Hc+ 

Let us note that in (2.20) we have two types of sums: in the first X [ j , k , , , , , r = l  the maximal 
order of the derivatives is r = p ;  in the second ZLJ,k , , , , , r=p+l  the maximal order of the 
derivatives equals r = n - p .  Since, now, all the terms in the relations (2.17) and (2.20) 
are normally ordered, we have the Liouville equation (2.6) in the form 

ihapN/a t  = (2.17)+(2.20). (2.21) 
Applying the operator X-I to both sides of (2.21) and taking into account (2.10) we 
obtain, after some simple algebra, 

+terms higher than first order (2.22) 

(2.23) 

where 
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(2.25) 

Next, on putting dT=aXo/aai in (2.22), we get the first term of (2.7). The sums 
and X:=,+, can be made to collapse, thus allowing us to obtain the term 2;==, 9T a@/aa? 
in (2.7) with 9T =aX,,,/aai. We get the higher terms of (2.7) from (2.22) in the same 
way. 

To find equation (2.8), we assume that the density matrix p is expressed in 
antinormal form and transform the commutator in (2.6) by way of the relation (see 
appendix) 

1 p a2Q2pA a2Q: -- +S i,,C=l aa, aaj aa, + +  aaj 

+- E 
+ +  

_ -  1 f a3Q2pA a'Q: 
3! i , j ,k=l  aa, aaj aak aa t  aaf aak  

(-1)' arQ2pA 8.0: 
r !  i,j,k ._., I = 1  aa, aaj auk . .  . aa, a a t  aaf aa: . . . aa:' (2.26) 

The other steps are similar to those presented above. 
In general, the non-operator equations (2.7) and (2.8) can be said to be two 

equivalent forms of the Liouville equation (2.6). Although the fact of such equivalence 
is known (Louise11 1973) and examples of the QN and @ A  equations have been studied 
extensively (Peiina 1984), the general form of such equations and their coefficients 
have as yet not been published. The two equations (2.7) and (2.8) are similar, 
respectively, to the backward and forward Fokker-Planck equations (Risken 1984). 
However, our drift-like di, gi and diffusion-like coefficients 9ijk..r do not exhibit the 
same stochastic properties as in the Fokker-Planck equation itself. Here, they exist 
independent of all reservoir philosophy connected with the Fokker-Planck equation 
because their sources are not stochastic Langevin operators but non-linear interactions 
described by the Hamiltonian (2.1)-(2.3). 

3. Conclusion and an example 

Let us consider a simple example from quantum optics-the non-degenerate version 
of parametric lossless generation with classical pumping (Peiina 1984). In this case 
the Hamiltonian is given by 

L 

Ho= h wia+ai 

Hint= hg[a ,a ,  exp(iwt -icp)+ HC]. 

i = l  

(3.1) 
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The corresponding @ A  equation is given by 

where the coefficients d and 9 are immediately obtained from (2.9) 

- hga2 exp(iwt - icp) Xint= hg[a,a2 exp(iwt-icp)+cc] (3.3) 
cJ* a % n t  

aa1 
1 -  

- gh exp(iwt - icp). GJ* -a* a2%nt  
1 2 -  21  - aa, aa2 

Of course, equations (3.2) and (3.3) can be found with the help of the 'traditional' 
method of Louise11 (Pefina 1984), but it is mathematically cumbersome and laborious. 
The solution of (3.2) and (3.3) has the form 

(3.4) 

where 

B = I( 1 -cosh 2g) + g cosh 2gt 

& ( r )  = exp(-io,t)&(O) cosh gt - i (T(O)  exp(icp) sinh g t  

D = -i exp( - i d )  sinh 2gt 

t 2 ( f )  =e~p(- iw, f )5~(0)  cosh gt-i ,$(O) exp(icp) sinh gt 

K = B2 - 1DI2 

which enables us to calculate the statistical moments (ala+&) as follows (Peiina 1984): 

a'a*k@A d2a. (3.5) I 
It can be proved that the Liouville equation in operator form for the Hamiltonian (3.1) 
is given by 

+ -ig exp(iwt -icp) - apa2+*) +,,I [ (z+z aa ,aa2  

and (3.6) does not seem to be easily solvable without the aid of the QA function. 
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Finally, we see that in practice the method presented of finding the QN and Q A  

equations is ‘direct’ in that (2.9) leads to the coefficients directly. Our method is 
applicable to a large class of photon-photon, photon-phonon and other interactions 
described by Hamiltonians of the type (2.1) and (2.2). 
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Appendix 

In order to prove (2.19) we start with the following relation (Louise11 1973): 

[f(a,  a+) ,  a + ]  = afb ,  a+)/aa 

fa+ = cf (A21 

( A l l  

leading to 

where 

c = a+ + a/aa. 

We see that if Q1 = a ,  then 

fQ: = c l f  = Q:f +aflaa,. 

If 

2 

91 = fl ai 
i = l  

then 

2 aQ: af 1 a2f 
fQ:= n cf= Q:f+ 7 -+- 1 -. 

i =  1 , = I  aai aa, 2! i,j=l aa, aaj 

If 

3 

Ql = n ai 
i = l  

then 

3 aQ: af  fQ:=n c f = Q : f + c  +- 
i=l i = l  aai aai 
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Therefore, if Q, = IIf=’=, ai ,  the mathematical induction method leads to 

In order to get (2.19) from (A6), we have to replace the operator function f by normally 
ordered matrix p N  and then conjugate both sides of (A6). 

The relation (2.24) can be derived similarly as (A6) if we start with 

f a  = cf (A71 

were c = a -a/aa+ 

Note added in proof: Recently, relevant results concerning the quantum Liouville equation for the @ A  

function of the anharmonic oscillator have been proposed by Milburn (1986). 
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